Package: marp 0.1.0
Jie Kang
marp: Model-Averaged Renewal Process
To implement a model-averaging approach with different renewal models, with a primary focus on forecasting large earthquakes. Based on six renewal models (i.e., Poisson, Gamma, Log-Logistics, Weibull, Log-Normal and BPT), model-averaged point estimates are calculated using AIC (or BIC) weights. Additionally, both percentile and studentized bootstrapped model-averaged confidence intervals are constructed. In comparison, point and interval estimation from the individual or "best" model (determined via model selection) can be retrieved.
Authors:
marp_0.1.0.tar.gz
marp_0.1.0.zip(r-4.5)marp_0.1.0.zip(r-4.4)marp_0.1.0.zip(r-4.3)
marp_0.1.0.tgz(r-4.4-any)marp_0.1.0.tgz(r-4.3-any)
marp_0.1.0.tar.gz(r-4.5-noble)marp_0.1.0.tar.gz(r-4.4-noble)
marp_0.1.0.tgz(r-4.4-emscripten)marp_0.1.0.tgz(r-4.3-emscripten)
marp.pdf |marp.html✨
marp/json (API)
NEWS
# Install 'marp' in R: |
install.packages('marp', repos = c('https://kanji709.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kanji709/marp/issues
Last updated 2 years agofrom:1066db6c30. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | OK | Oct 26 2024 |
R-4.5-linux | OK | Oct 26 2024 |
R-4.4-win | OK | Oct 26 2024 |
R-4.4-mac | OK | Oct 26 2024 |
R-4.3-win | OK | Oct 26 2024 |
R-4.3-mac | OK | Oct 26 2024 |
Exports:bpt_bstrpbpt_loglbpt_rpdlloggamma_bstrpgamma_loglgamma_rploglogis_bstrploglogis_loglloglogis_rplognorm_bstrplognorm_rplowerTmarpmarp_bstrpmarp_confintpercent_confintpllogpoisson_bstrppoisson_rpstudent_confintupperTweibull_bstrpweibull_loglweibull_rp